skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Salem, Hassan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Johnson, Karyn N. (Ed.)
    ABSTRACT A pervasive pest of stored leguminous products, the bean beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) associates with a simple bacterial community during adulthood. Despite its economic importance, little is known about the compositional stability, heritability, localization, and metabolic potential of the bacterial symbionts of C. maculatus . In this study, we applied community profiling using 16S rRNA gene sequencing to reveal a highly conserved bacterial assembly shared between larvae and adults. Dominated by Firmicutes and Proteobacteria , this community is localized extracellularly along the epithelial lining of the bean beetle’s digestive tract. Our analysis revealed that only one species, Staphylococcus gallinarum (phylum Firmicutes ), is shared across all developmental stages. Isolation and whole-genome sequencing of S. gallinarum from the beetle gut yielded a circular chromosome (2.8 Mb) and one plasmid (45 kb). The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine, which is increasingly recognized as an important symbiont-supplemented precursor for cuticle biosynthesis in beetles. A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus . The ontogenic conservation of the gut microbiota in the bean beetle, featuring a “core” community composed of S. gallinarum , may be indicative of an adaptive role for the host. In clarifying symbiont localization and metabolic potential, we further our understanding and study of a costly pest of stored products. IMPORTANCE From supplementing essential nutrients to detoxifying plant secondary metabolites and insecticides, bacterial symbionts are a key source of adaptations for herbivorous insect pests. Despite the pervasiveness and geographical range of the bean beetle Callosobruchus maculatus , the role of microbial symbioses in its natural history remains understudied. Here, we demonstrate that the bean beetle harbors a simple gut bacterial community that is stable throughout development. This community localizes along the insect’s digestive tract and is largely dominated by Staphylococcus gallinarum . In elucidating symbiont metabolic potential, we highlight its possible adaptive significance for a widespread agricultural pest. 
    more » « less
  2. The metabolic intimacy of symbiosis often demands the work of specialists. Natural products and defensive secondary metabolites can drive specificity by ensuring infection and propagation across host generations. But in contrast to bacteria, little is known about the diversity and distribution of natural product biosynthetic pathways among fungi and how they evolve to facilitate symbiosis and adaptation to their host environment. In this study, we define the secondary metabolism of Escovopsis and closely related genera, symbionts in the gardens of fungus-farming ants. We ask how the gain and loss of various biosynthetic pathways correspond to divergent lifestyles. Long-read sequencing allowed us to define the chromosomal features of representative Escovopsis strains, revealing highly reduced genomes composed of seven to eight chromosomes. The genomes are highly syntenic with macrosynteny decreasing with increasing phylogenetic distance, while maintaining a high degree of mesosynteny. An ancestral state reconstruction analysis of biosynthetic pathways revealed that, while many secondary metabolites are shared with non-ant-associated Sordariomycetes, 56 pathways are unique to the symbiotic genera. Reflecting adaptation to diverging ant agricultural systems, we observe that the stepwise acquisition of these pathways mirrors the ecological radiations of attine ants and the dynamic recruitment and replacement of their fungal cultivars. As different clades encode characteristic combinations of biosynthetic gene clusters, these delineating profiles provide important insights into the possible mechanisms underlying specificity between these symbionts and their fungal hosts. Collectively, our findings shed light on the evolutionary dynamic nature of secondary metabolism in Escovopsis and its allies, reflecting adaptation of the symbionts to an ancient agricultural system.Microbial symbionts interact with their hosts and competitors through a remarkable array of secondary metabolites and natural products. Here, we highlight the highly streamlined genomic features of attine-associated fungal symbionts. The genomes of Escovopsis species, as well as species from other symbiont genera, many of which are common with the gardens of fungus-growing ants, are defined by seven chromosomes. Despite a high degree of metabolic conservation, we observe some variation in the symbionts’ potential to produce secondary metabolites. As the phylogenetic distribution of the encoding biosynthetic gene clusters coincides with attine transitions in agricultural systems, we highlight the likely role of these metabolites in mediating adaptation by a group of highly specialized symbionts. 
    more » « less